THE PICTURE OF THE TAOIST GENII PRINTED ON THE COVER of this book is part of a painted temple scroll, recent but traditional, given to Mr Brian Harland in Sichuan province (1946) by the philologist and epigrapher Wen You (1901–1985). Concerning these four divinities, of respectable rank in the Taoist bureaucracy, the following particulars have been handed down. The title of the first of the four signifies 'Heavenly Prince', that of the other three 'Mysterious Commander'.

At the top, on the left, is Liu Tian Jun, Comptroller-General of Crops and Weather. Before his deification (so it was said) he was a rain-making magician and weather forecaster named Liu Jun, born in the Jin dynasty about +340. Among his attributes may be seen the sun and moon, and a measuring-rod or carpenter's square. The two great luminaries imply the making of the calendar, so important for a primarily agricultural society, the efforts, ever renewed, to reconcile celestial periodicities. The carpenter's square is no ordinary tool, but the gnomon for measuring the lengths of the sun's solstitial shadows. The Comptroller-General also carries a bell because in ancient and medieval times there was thought to be a close connection between calendrical calculations and the arithmetical acoustics of bells and pitch-pipes.

At the top, on the right, is Wen Yuan Shuai, Intendant of the Spiritual Officials of the Sacred Mountain, Tai Shan. He was taken to be an incarnation of one of the Hour-Presidents (Jia Shen), i.e. tutelary deities of the twelve cyclical characters (see vol. 4, pt. 2, p. 440). During his earthly pilgrimage his name was Huan Ziyu and he was a scholar and astronomer in the Later Han (+142). He is seen holding an armillary ring.

Below, on the left, is Gou Yuan Shuai, Assistant Secretary of State in the Ministry of Thunder. He is therefore a late emanation of a very ancient god, Lei Gong. Before he became deified he was Xin Xing, a poor woodcutter, but no doubt an incarnation of the spirit of the constellation Gou Chen (the Angular Arranger), part of the group of stars which we know as Ursa Minor. He is equipped with hammer and chisel.

Below, on the right, is Bi Yuan Shuai, Commander of the Lightning, with his flashing sword, a deity with distinct alchemical and cosmological interests. According to tradition, in his early life he was a countryman whose name was Tian Hua. Together with the colleague on his right, he controlled the Spirits of the Five Directions.

Such is the legendary folklore of common men canonised by popular acclamation. An interesting scroll, of no great artistic merit, destined to decorate a temple wall, to be looked upon by humble people, it symbolises something which this book has to say. Chinese art and literature have been so profuse, Chinese mythological imagery so fertile, that the West has often missed other aspects, perhaps more important, of Chinese civilisation. Here the graduated scale of Liu Jun, at first sight unexpected in this setting, reminds us of the ever-present theme of quantitative measurement in Chinese culture; there were rain-gauges already in the Song (+12th century) and sliding calipers in the Han (+1st). The armillary ring of Huan Ziyu bears witness that Nabonassar and Hipparchus, al-Naqqaṣ and Tycho, had worthy counterparts in China. The tools of Xin Xing symbolise that great empirical tradition which informed the work of Chinese artisans and technicians all through the ages.
Certain it is that no people or group of peoples has had a monopoly in contributing to the development of Science. Their achievements should be mutually recognised and freely celebrated with the joined hands of universal brotherhood.

Science and Civilisation in China Volume I, Preface

Joseph Needham directly supervised the publication of seventeen books in the Science and Civilisation in China series, from the first volume, which appeared in 1954, through to Volume VI.3, which was in press at the time of his death in March 1995.

The planning and preparation of further volumes will continue. Responsibility for the commissioning and approval of work for publication in the series is now taken by the Publications Board of the Needham Research Institute in Cambridge, under the chairmanship of Dr Christopher Cullen, who acts as general editor of the series.
Dedicated to

LI JINGHUA 李京华

and to the memory of

RONALD FRANK TYLECOTE

Two archaeometallurgists, East and West, who can represent here the hundreds of metallurgists, archaeologists, and historians on whose work this volume is based.

Nous nous devons premièrement à notre Patrie; mais nous nous devons aussi au reste du monde; ceux qui travaillent pour perfectionner les Sciences & les Arts, doivent même se regarder comme les Citoyens du monde entier.

René Antoine Ferchault de Réaumur (1722)
CONTENTS

List of illustrations .. page xiii
List of tables .. xxii
List of text boxes .. xxiii
List of abbreviations .. xxiv
Series editor’s preface .. xxv
Preface .. xxix

36(c) FERROUS METALLURGY page 1

1 Introduction, p. 1

2 Introductory orientations: the traditional Chinese iron industry in recent centuries, p. 5
 (i) Small-scale ironworks of the Dabie Mountains, p. 7
 Ironsand, p. 8
 The blast furnace, p. 8
 The fining hearth, p. 16
 (ii) Large-scale ironworks in Sichuan, p. 21
 The blast furnace, p. 22
 The puddling furnace, p. 30
 The Sichuan iron industry, p. 33
 (iii) Crucible smelting in Shanxi, p. 38
 Crucible smelting, p. 38
 (iv) Large- and small-scale ironworks in Guangdong, p. 47
 Small blast furnaces, p. 47
 Large blast furnaces, p. 48
 (v) Traditional Chinese iron-foundry technology, p. 60
 (vi) Traditional Chinese steelmaking technology, p. 65
 Cementation, p. 66
 Co-fusion, p. 69
 (vii) The modern fate of the Chinese iron industry, p. 73
 Western competition, p. 74
 Return on investment, p. 77
 The effects of decline on technology, p. 78
 The Great Leap Forward, p. 79
 (viii) Digression: economies of scale in blast-furnace iron production, p. 81

3 The earliest use of iron in China, p. 83
 (i) The state of the question, p. 83
(ii) Iron on the periphery of the Zhou Empire, p. 91

Early iron in Korea, p. 97

(iv) Iron casting and the blast furnace, p. 105

4. The flourishing iron industry of the 3rd and 2nd centuries, p. 115

(i) The widespread use of iron, p. 116

Textual evidence, p. 116

Archaeological material, p. 121

Iron artefacts in graves of Chu and Qin, p. 122

(ii) The arts of the smith, p. 128

A mass grave of fallen soldiers, p. 128

Quench-hardening in early Chinese thought, p. 134

Bloomery smelting versus fining, p. 137

(iii) Ironworks and ironmasters, p. 140

Ironmasters, p. 140

Ironworks, p. 144

The rise of the state of Qin, p. 146

The arts of the foundryman, p. 147

Melting furnaces, p. 147

Molds, p. 150

(v) Malleable cast iron, p. 159

White and grey cast iron, p. 161

Malleable cast iron, p. 164

5. The Han state monopoly of the iron industry, p. 171

(i) Outline history of the monopoly, p. 172

Background, p. 172

The establishment of the monopoly, p. 173

Criticism and disputation, p. 178

The reforms of Wang Mang, p. 183

The Eastern Han period, p. 184

(ii) Discourses on salt and iron, p. 185

The state and the forces of nature, p. 186

The scale of industrial production, p. 187

The blessings of wealth, p. 188

The body politic, p. 189

Calculation, p. 190

6. The arts of the smith from late Han through Tang, p. 249

(i) Iron and the state, p. 249

(ii) Wider knowledge of siderurgical techniques, p. 252

(iii) Co-fusion steelmaking, p. 255

Lower-temperature co-fusion, p. 257

Higher-temperature co-fusion, p. 258

Some Han steelmaking crucibles, p. 261

Crucible steel?, p. 264

Other times and places, p. 264

(iv) What was bin iron – Persian steel, Indian steel, watered steel?, p. 268

(v) ‘Hundredfold refined steel’, p. 272

7. Technical evolution and economic revolution in the Song period, p. 278

(i) The uses of iron, p. 280

Artefacts from some Yuan ships, p. 286

Some agricultural implements, p. 281

A blacksmith’s story, p. 285

Iron coins, p. 286

Iron monuments, p. 289

The Lion of Cangzhou, p. 291

Cast-iron artillery, p. 292

(ii) The ironworks, p. 294

Liguo Industrial Prefecture, p. 300

Wealthy ironmasters in Dengzhou, p. 301

Corvée iron production in Hancheng, p. 303
The technology of iron and steel production, p. 305
Blast furnaces, p. 305
The use of mineral fuel in iron smelting, p. 311
Digression: the early use of mineral fuel in English iron smelting, p. 313
Mineral fuel in Song–Yuan iron smelting, p. 317
Shen Guan on steel and steelmaking, p. 320
A Yuan-period cupola furnace, p. 324
Economic expansion in the Ming period, p. 326
State ironworks in Zunhua, Hebei, 1403–1581, p. 327
Background, p. 327
Zunhua, p. 328
Establishment, p. 330
Fu Jun’s description of technology at Zunhua, p. 332
Operating parameters, p. 334
Closure, p. 337
Recapitulation, p. 338
Some Chinese contributions to modern siderurgical technology, p. 347
Indirect smelting: blast furnace + finery, p. 347
Carolingian blast furnaces?, p. 348
Blast furnaces in the Caspian provinces of northern Iran, p. 349
Austria – the Stuckofen, p. 352
Early blast furnaces in Sweden, p. 353
Germany – the Massofen, p. 354
Italy, p. 355
The blast furnace from China to Europe?, p. 356
Iron casting, p. 356
Malleable cast iron, p. 357
The Bessemer process? Chinese ironworkers in western Kentucky, 1854, p. 361
Shanxi crucible smelting in Sweden – the Hoganäs process, p. 365
Epilogue, p. 366

Bibliography A: Pre-modern Chinese and Japanese books page 372
Bibliography B/C: Modern publications in all languages 380
Index .. 449
Table of Chinese periods and dynasties 478

ILLUSTRATIONS

PLATES

Between pages 222 and 223.

IX 'Pouring molten iron' (lòu tiē shuǐ 溶液水), gouache painting by an unknown Chinese artist, probably in Guangzhou, mid-19th century. Reproduced with the permission of the British Library.

XI Wok repairman, gouache painting by the Chinese artist You-qua in Guangzhou, mid-19th century. Reproduced with the permission of The Royal Library, Copenhagen.

XII Photographs and sketched reconstructions of two bronze–iron weapons of the early Zhou period, reproduced from Gettens et al. (1971).

XIII Two photographs of a bronze–iron yue-axehead from a late Shang city-site at Taixicun in Gaosheng County, Hebei, reproduced from Tang Yuming and Lin Shihu (1973).

XIV Photograph of a bronze–iron yue-axehead found in a Shang period grave excavated at Lajiahe in Pinggu County, Beijing Municipality, reproduced from Yuan Jingping and Zhang Xiande (1977).

XV Sketch and photograph of a spearhead of bronze and jade from a Shang period tomb at Huayuanzhuang in Anyang, Henan, reproduced from Xu Guangde and He Yuling (2004).

XVI Photograph and sketch of an iron short-sword with hilt of bronze, jade, and turquoise from the tomb of Guo Ji in Sanmenxia, Henan, reproduced from Anon. (1999).

XVII Photographs and sketches of a bronze–iron dagger-axe head with turquoise inlay from the tomb of Guo Ji in Sanmenxia, Henan, reproduced from Anon. (1999).

XVIII Sketch of a bronze–iron spearhead from the tomb of Guo Zhong in Sanmenxia, Henan, reproduced from Han Rubin et al. (1999).
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Photograph and sketch of a bronze-melting furnace from the Shang period site in Zhengzhou, Henan, reproduced from Anon. (1977b)</td>
<td>148</td>
</tr>
<tr>
<td>68</td>
<td>Diagram showing how a bronze-melting furnace like that in Figure 67 was used, reproduced from Li Jinghua (1994b)</td>
<td>149</td>
</tr>
<tr>
<td>69</td>
<td>Reconstruction of a type of bronze-melting furnace found at many foundry sites of the Spring and Autumn period, reproduced from Li Jinghua (1994b)</td>
<td>149</td>
</tr>
<tr>
<td>70</td>
<td>One type of iron-melting furnace of the Warring States period, reproduced from Li Jinghua (1994b)</td>
<td>151</td>
</tr>
<tr>
<td>71</td>
<td>Reconstruction of another type of iron-melting furnace of the Warring States period, reproduced from Li Jinghua (1994b)</td>
<td>151</td>
</tr>
<tr>
<td>72</td>
<td>Two-section ceramic mould for an iron hoe-blade from the Warring States ironworks site at Yangcheng in Dengfeng County, Henan, reproduced from Anon. (1977b)</td>
<td>152</td>
</tr>
<tr>
<td>73</td>
<td>Section of a ceramic mould for two ring-handled knives from the Warring States ironworks site at Yangcheng in Dengfeng County, Henan, reproduced from Anon. (1977b)</td>
<td>153</td>
</tr>
<tr>
<td>74</td>
<td>Artefacts from the Warring States ironworks site at Yangcheng in Dengfeng County, Henan, reproduced from Anon. (1977b)</td>
<td>153</td>
</tr>
<tr>
<td>75</td>
<td>Stack-moulds under excavation in a kiln at the Han iron-foundry site in Wen County, Henan, reproduced from Anon. (1978a)</td>
<td>155</td>
</tr>
<tr>
<td>76</td>
<td>Sketches of a stack-mould for casting iron belt-buckles, reproduced from Anon. (1978a)</td>
<td>155</td>
</tr>
<tr>
<td>77</td>
<td>Photograph of an individual section of the stack-mould, reproduced from Anon. (1978a)</td>
<td>156</td>
</tr>
<tr>
<td>78</td>
<td>Reconstruction of the process of making the pattern-box for a mould section, reproduced from Anon. (1978a)</td>
<td>156</td>
</tr>
<tr>
<td>79</td>
<td>Three-section cast-iron moulds from the Warring States iron-foundry site in Xinglong County, Hebei; sketches reproduced from Zheng Shaozong (1956); photographs supplied to Joseph Needham by the Chinese Ministry of Culture through Rewi Alley</td>
<td>157</td>
</tr>
<tr>
<td>80</td>
<td>Sketch of the whole process of casting the parts of an iron mould for a V-shaped ploughshare cap, reproduced from Li Jinghua (1996)</td>
<td>158-9</td>
</tr>
<tr>
<td>81</td>
<td>Arrangement of the iron mould for pouring, reproduced from Li Jinghua (1994a)</td>
<td>159</td>
</tr>
<tr>
<td>82</td>
<td>Mouldboard, ploughshare, and V-shaped cap found at Wangxiangyun in Liguan County, Shaanxi, reproduced from Li Changqing and He Han (1966)</td>
<td>160</td>
</tr>
<tr>
<td>83</td>
<td>Microstructure of a ploughshare-cap mould from an ancient scrap-heap excavated in Manchi County, Henan, reproduced from Anon. (1976)</td>
<td>161</td>
</tr>
</tbody>
</table>

List of Illustrations

85 | Hexagonal hoe-head fragment from an ancient copper-mine site at Tonglushan in Daye County, Hubei, reproduced from Ye Jun (1973) | 164 |
86-87 | Microstructure of the hoe-head fragment of Figure 85, reproduced from Li Zhong (1973) | 165 |
88 | Spade-head, one of seven found in an accumulation outside the entrance to the tomb of Dou Wan, consort of Liu Sheng, in Mancheng, Hebei, reproduced from Anon. (1980c) | 166 |
89 | Microstructure of a spade-head from the tomb of Dou Wan, reproduced from Anon. (1980c) | 166 |
90 | Map showing the approximate locations of Iron Offices in the Han period | 168 |
91 | Rubbings of cast-in inscriptions on Han-period iron implements, reproduced from Li Jinghua (1974) | 199 |
92 | Eastern Han period graves of convict labourers near the Han city of Luoyang, under excavation in 1964, reproduced from Anon. (1972b) | 220 |
93 | Inscribed brick from the cemetery of convict labourers near the Han city of Luoyang, reproduced from Anon. (1972b) | 220 |
94 | Diarogs of two exceptionally large ploughshares of the Han period, reproduced from Zhang Chuanxi (1985a) | 226 |
95 | Ploughing scene; detail from a stone relief found at Shuanggou in Saining County, Jiangsu, reproduced from Anon. (1972a) | 227 |
96 | Wooden models of an ox and a plough from Tomb no. 47 at Moju in Wuwei County, Gansu, reproduced from Anon. (1972a) | 227 |
97 | Sketches of ploughing scenes from various Han-period artistic representations, reproduced from You Zhennao and Zhou Xiaohu (1984) | 227 |
98 | Large blast-furnace ‘bear’ of sintered iron at the Guixingzhen Han ironworks site museum, photograph by DBW | 233 |
99 | Diagram of the ‘bear’ shown in Figure 98, reproduced from Anon. (1978c) | 233 |
100 | Speculative reconstruction of a blast furnace at the Han ironworks site at Guixingzhen; originally due to Liu Yuncui, Li Jinghua, and others (Anon., 1978c; Liu Yuncui, 1992); modified by DBW | 234 |
101 | Sketch by Li Jinghua of the operation of a Han blast furnace, redrawn by R. F. Tylecote (1983) | 235 |
102 | Reconstruction of a Han-period cupola furnace excavated at Wafangzhuang in Nanyang, Henan, reproduced and translated from Anon. (1978c) | 238 |
103 | Ceramic tuyere from the Han-period foundry site excavated at Wafangzhuang in Nanyang, Henan, reproduced from Anon. (1978c) | 238 |
<table>
<thead>
<tr>
<th>XX</th>
<th>LIST OF ILLUSTRATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>Plan of certain features at the iron-foundry site at Wafangzhuang in Nanyang, Henan, reproduced from Li Jinghua and Chen Changshun (1995)</td>
</tr>
<tr>
<td>105</td>
<td>Sketch of the ‘ladle-shaped pit’ of Figure 104, reproduced from Li Jinghua and Chen Changshun (1995)</td>
</tr>
<tr>
<td>106</td>
<td>Remains of a fining hearth excavated at the Tieshenggou ironworks site, reproduced from Anon. (1962)</td>
</tr>
<tr>
<td>107</td>
<td>Diagram of the Han-period fining hearth shown in Figure 106, reproduced from Anon. (1962)</td>
</tr>
<tr>
<td>108</td>
<td>Detail of a rubbing of an Eastern Han period tomb-relief discovered at Hongdaoyuan in Bengbu County, Shandong, obtained for Joseph Needham by Renyi Alley in 1959; archives of the Needham Research Institute</td>
</tr>
<tr>
<td>109</td>
<td>Speculative reconstruction of the bellows shown in the Teng County tomb-relief, reproduced from Wang Zhenduo (1959)</td>
</tr>
<tr>
<td>110</td>
<td>Iron–carbon equilibrium diagram, redrawn from Hansen (1958)</td>
</tr>
<tr>
<td>111</td>
<td>Photographs of three patterned-steel swords in private Chinese collections, reproduced from He Tkyan and Tangkun Vo (2001)</td>
</tr>
<tr>
<td>112</td>
<td>Crucibles from a Han grave excavated at Jiti in Luoyang, Henan, reproduced from Ye Wansong et al. (1982) and He Tangkun et al. (1985)</td>
</tr>
<tr>
<td>113</td>
<td>Illustration accompanying Massalski’s description of the preparation of watered steel in Persia, reproduced from Massalski (1941)</td>
</tr>
<tr>
<td>114</td>
<td>Sketches of three scribe’s-knives with gold-inlaid inscriptions, reproduced from Lao Zhentui (1951)</td>
</tr>
<tr>
<td>115</td>
<td>Thirtyfold refined ring-pommelled sabre from Changshan, Shandong, reproduced from Chen Zijing and Liu Xujian (1974)</td>
</tr>
<tr>
<td>116</td>
<td>Fiftyfold refined sword from Puqiang in Tongshan County, Jiangsu, reproduced from Wang Kai (1974)</td>
</tr>
<tr>
<td>117</td>
<td>Sketches of iron artefacts from six 18th-century shipwrecks excavated at Nankihourmet in C1 County, Hebei, reproduced from Zhu Jincheng (1989)</td>
</tr>
<tr>
<td>118</td>
<td>Sketches of iron implements from a hoard of 64 iron artefacts discovered at Juanzhongtang in Fangshan County, Beijing, reproduced from Su Tianjun (1983)</td>
</tr>
<tr>
<td>119</td>
<td>Photographs of iron artefacts from several sites in the Li and Jin periods in the vicinity of Beijing, reproduced from Su Tianjun (1983)</td>
</tr>
<tr>
<td>120</td>
<td>Implements. Detail from a mural in a cave-temple at Yulin in Anxi, Gansu, reproduced from Wang Jingru (1980)</td>
</tr>
<tr>
<td>121</td>
<td>Map showing locations of prefectures mentioned in Table 4</td>
</tr>
</tbody>
</table>

122	Song-period blast furnace, still standing at Kuangshancun, near Handan, Hebei, reproduced from Liu Yuncai (1978)	306
123	‘Ancient charcoal blast furnace in the interior of China’, reproduced from Gottwald (1936)	307
124	Blast furnaces in western Hunan, 1938, photographed by Resi Alley in 1938; archives of the Needham Research Institute	307
125	Diagram of a blast furnace in Sichuan, ca. 1938, reproduced from Yang Kuan (1982)	308
126–128	Blast furnaces at Dongchuan in Anhui County, Heilongjiang, reproduced from Wang Yongxiang (1965)	309–10
129	Ironworks in central China, ca. 1900, reproduced from Lux (1927)	318
130	Operation of a Yuan-period cupola furnace, casting large cauldrons for salt-boiling, reproduced from the SKQS edn of Ao bo tu	324
131	Satellite photograph of the village of Tiechang in Zunhua County, Hebei, 20 December 1967; United States Geological Survey, Global Land Information System	322
132	‘Washing sand iron’ and ‘Gathering lamp ore by ploughing’, illustrations in Tian gong kai wu	340
133	‘Furnaces for refining cast and wrought iron’, illustrations in Tian gong kai wu	340
134	Ironsand slicing at Lijinzhai in Xinyang, Henan, reproduced from Tesnyager (1923–4)	344
135	Photograph and sketch of a blast furnace in ‘Lavesichtung’, Masur-	351
136	Lapphyttan blast furnace in Norberg, Sweden, under excavation, reproduced from Magnusson (1985)	354
137	Illustration from Reaumur’s treatise on iron (1724)	358
138	Two pages from a catalogue of the California Todd and Steel Company	359
139	US Census for 1860, Lyon County, Kentucky, page 34. US National Archives and Records Administration	366
TABLES

1. Locations of Iron Offices according to the Han shu, the Hou Han shu, and some other early sources ... page 193–7
2. Archaeological evidence of Han and pre-Han ironworks 201–9
3. Analyses of ore, slag, and pig iron from the Guxingzhen ironworks site ... 237
4. Statistics given in Song hui yao ji gao concerning iron mines and smelters in the Song period .. 295–8

TEXT BOXES

1. Technical details of the operation of an iron blast furnace page 14–15
2. Description by Béla Széchenyi of the operation of a water-powered blast furnace at Huangguipu in Rongjing County (modern Yingjing), Sichuan, ca. 1877 ... 24
3. Description of blast furnaces in Sichuan in the 1930s ... 28–9
4. Translation of a passage on iron smelting by Qu Dajun (1630–96) in Guang dong xin yu ... 49–52
5. Description of the operation of an iron foundry, probably somewhere near Guangzhou, in 1899 .. 63
6. Description of the work of a Chinese wok-repairman, 1851 65
7. Description of steelmaking by ‘anointing’ wrought iron with molten cast iron at Beibei in Chongqing, 1938 70
8. Iron smelting in a bloomery furnace .. 89–90
9. Translation of Tian tu lu, ch. 36 .. 180–2
10. Selected entries from a commandery personnel list excavated from Tomb M6, dated ca. –10, at Yinwan in Donghai County, Jiangsu 211–13
11. The preparation of Damascus steel in Persia in the early 19th century 266
12. Song Yingxing on iron and steel production, translated from Tian gong kai wu .. 341–2
13. Description of traditional blast-furnace operation in Mazandaran, northern Iran, 1928 ... 359
14. Description of a traditional Japanese method of malleablising annealing, 1886 ... 360
Vita pro ferro, the title of a Festschrift for the metallurgist Robert Durrer,1 gave me a laugh when I first saw it. Now, years later, I find that I have spent half my life researching and writing on ferrous metallurgy and its history. How did this happen?

I was about 25, a beginning student of Chinese with a degree in mathematics and a brilliant future in computer systems behind me, when a teacher introduced me to Science and Civilisation in China. I was attracted immediately to Joseph Needham’s erudition, to his clear and precise language, and perhaps most of all to his use of his scientific background in a constant concern for ‘brass tacks’. At that time four volumes had appeared; I devoured these, and most of the following volumes as they appeared. Today I count Joseph Needham’s work as one of the most important components of my basic sinological education, and one of the models constantly before me in my career of research and writing.

My first research was in the history of mathematics in China, but after a conversation with Professor Noel Barnard in 1978 I began looking seriously at the history of iron technology in ancient China. The need to ‘get my hands dirty’ soon became apparent, and in 1981 I began studying metallurgy with Dr V. F. Buchwald at the Technical University of Denmark.

When, around that time, Joseph Needham asked me to be his collaborator for Ferrous Metallurgy, I readily accepted, but felt that it was important to finish the book I was currently working on, Iron and steel in ancient China,2 before starting on this chronologically broader work. That book required much longer to complete than I had ever expected – a phenomenon I had seen before with other publications, and would see again. It was essentially finished in 1990, and published in 1993. In all that time I had been preparing on the side for this volume for SCC, gathering bibliography and reading up necessary historical and technical background. Actual writing could begin in 1994 when, thanks to the efforts of the Publications Board of the Needham Research Institute, I received a grant from the Leverhulme Trust for two and a half years of research in Cambridge. The work continued after my return to Denmark, with ups and downs due to unstable employment, and now, in 2006, I feel that the volume is as finished as I can make it.

Though I count myself among Joseph Needham’s admirers, long-term readers of Science and Civilisation in China will notice that I disagree with him on a number of matters large and small. I cannot believe in the essential virtue of Progress, or in

1 Guyan (1967).
modern natural science as a measure of historical value, in quite the same way that he did; and my socialism is not his socialism.

The title page of this volume presents Ferrous Metallurgy as a branch or aspect of Chemistry, but this is a categorisation that I have never found especially useful. As another of Joseph Needham’s critical admirers, Francesca Bray, has pointed out, the hierarchy of knowledge on which the structure of Science and Civilisation in China is based, with all technology seen as applied science, was already considered old-fashioned when the first volume was published in 1954.1 But structure is as structure does, and this old-fashioned structure, with its emphasis on the brass tacks of modern science, continues to serve well after 24 volumes published over a period of more than 50 years.

Among more specific disagreements, I find the social sciences more useful than Joseph Needham did. As a young man at a technical university I fell in with the crowd in sneering at ‘the social so-called sciences’, but working in the history of technology has forced me to change that opinion. There are more appeals in this volume to theoretical economic and geographical considerations, in particular, than elsewhere in his work. Other social-scientific approaches, especially sociology and anthropology, would also have been useful in considering some of the broader aspects of the production and use of iron, but getting a book finished means recognising some personal limitations.

Among the goals of this volume is a demonstration of some of the ways in which technologies influence the course of history. Not some monolithic ‘Technology – Lewis Mumford’s tech’nic3 – but the many technologies which people have used to satisfy their practical needs. It has been said often enough in the 20th century that technology has consequences; the latter seen by various pundits with either hope or despair; but for the historian it is more important to realise that particular technologies have particular consequences. As we shall see further on in this volume, most agricultural implements in Han China were made of cast iron (more precisely, the kind called malleable cast iron, while in Roman Europe at the same time they were made of wrought iron. It will also become clear that these two different technologies had significant social and political consequences, though perhaps not as direct or extreme as those which Karl Marx suggested in his aphorism about hand-mills and steam-mills.4 At the same time, technologies are clearly shaped by the context in which they develop, and we must also ask the question, how it came to be that two societies with roughly similar practical needs adopted such different technologies to meet those needs.

Treating a technology as a historical factor requires us to understand it technically, and this volume includes a good many discussions which are based on detailed technical considerations. As in most of my publications, I attempt to explain these matters with readers in mind who know some chemistry and are accustomed to technical thinking. Others will find, I think, that they can skip the more technical discussions and still follow the basic lines of the argument.

The archives of the Needham Research Institute show that Joseph Needham began studying the history of ferrous metallurgy in China in the early 1950s. He gathered a good deal of primary and secondary source material, using his excellent contacts in China, and initiated two laboratory projects, to reconstruct Qiu Huanwen’s ‘co-fusion’ steelpmaking process, and to study the microstructures of ancient Chinese cast-iron artefacts.5 His monograph The development of iron and steel technology in China,6 completed in 1956, was for several decades all that was available on the subject in English. He was dissatisfied with it, however, especially after a friendly but very critical letter from the great metallurgist Cyril Stanley Smith, and in about 1959 he wrote a draft revision of the monograph which approximately tripled its size. But in the draft one can see him still struggling with the technical mysteries of ferrous metallurgy; he remained dissatisfied, and never published the revision. At about that time he quite suddenly abandoned the subject, even leaving several letters unanswered, and never returned to it.4

When I began studying the subject I had the great advantage that Chinese historians, archaeologists, and metallurgists had begun doing important work on all aspects of archaeometallurgy, but Joseph Needham’s monograph, and later the draft revision, were my best guide to the older literature and to the Chinese primary sources.

Another useful guide was John Percy’s Metallurgy. Iron; steel (1954). Percy was an admirable Victorian polymath, and in his book he summed up what was known of the science and technology of metallurgy in his time as well as their history worldwide. He wrote at a time of great change, but the older technologies were still alive, and he was able to describe them in useful technical detail.

Among other authors whose works guided this perplexed beginner were Ronald F. Tylecote, Noel Barnard, Yang Kuan 缦宽, Hua Jueming 华君明, Li Jinghua 李京华, and the group which in troubled times hid under the pseudonym Li Zhong 李中.7 Robert Hartwell’s Ph.D. dissertation on the Song iron industry (1969), and Bernd Eberstein’s on Ming mining and metallurgy (1974), were also immensely valuable as starting points in dealing with those periods.

In the years that followed I have enjoyed the advice and assistance of numerous friends and acquaintances, experts in the various archaeological, historical, and
technical fields that make up the background for this volume. Some of this help I have acknowledged in footnotes, and in the list further below I have tried to show my wider indebtedness.

Portions of this volume have appeared in earlier publications, and I am grateful to the editors and publishers for permission to use this material here.

Thanks are also due to numerous libraries and librarians: here I shall single out the staff of the public library in the small town of Frederikssund, where I have lived since my retirement in 2003. They have been unfailingly helpful, far beyond the call of duty, in obtaining books for me on many subjects in a variety of languages, including Chinese and Japanese.

For economic support I must thank the Nordic Institute of Asian Studies, the Danish Research Council for the Humanities, the Carlsberg Foundation, the University of Copenhagen, the Juliane von Müllern Foundation, the Technical University of Berlin, the Needham Research Institute, and the Leverhulme Trust.

And my greatest debt is, as always, to my dearest friend, Annie Winther.

MATTERS OF FORM

This volume of Science and Civilisation in China is the first to use the Pinyin transcription for Chinese instead of Joseph Needham’s modification of the Wade-Giles system, in which for example Qin is transcribed Chhin. The Publications Board of the Needham Research Institute made the decision to change the transcription in April 2004; I spent two weeks changing the transcription in an almost-complete manuscript, but this I was delighted to do, as I have always felt that the previous system formed a serious barrier between Joseph Needham’s work and its readers.

Another change made at about the same time was to combine Bibliographies B and C into one, so that all modern publications are to be found in one list.

As throughout Science and Civilisation in China, years before and after the Common Era are usually indicated by – and +, so that +1200 means the year 1200 CE and –117 means 117 BCE. The + is omitted for early modern and modern dates.

Unless otherwise specified, all translations from Chinese texts are my own. Wherever possible, however, I have also cited published translations of the same text. Readers may find it useful to consult these in order to see more of the context of the passages translated here.

10 These are listed in the bibliography under Wagner (1985–2006). In particular, Koninklijke Brill N.V., the publishers of my Iron and steel in ancient China (1993), kindly permitted the extensive reuse of material in that book.

11 An artefact of the transcription change is that the abbreviation ‘ch.’ in bibliographical references can mean either ‘chapter’ or juan (JN’s chüan).
36(c). FERROUS METALLURGY

I INTRODUCTION

Iron seemeth a simple metal, but in its nature are many mysteries, and men who bend to them their minds shall, in arriving days, gather therefrom great profit, not to themselves alone but to all mankind.

Attributed to Joseph Glanvill (1636–80)

The metallurgy of iron has long presented numerous mysteries to which craftsmen and philosophers have bent their minds. The craftsmen – smiths, ironfounders, and others – accumulated over millennia the amazing variety of techniques which made this the most useful and versatile of metals. Today we see the ancient craftsmen darkly, through folklore and through scientific examination of their works, and we know little of how they thought about their work and explained it to apprentices.

The challenge of explaining what the craftsmen knew provided important impulses to natural philosophers interested in the nature of matter. The names of Wang Chong 王充, Shen Gua 沈括, Descartes, and Réaumur are perhaps the best known, though there were dozens of others. Wang Chong in the +1st century, attempting to explain thunder and lightning, found a useful model in the iron-founder’s furnace.1 Shen Gua in the +11th century speculated that steel was a kind of gluten, which could be extracted from iron as gluten is extracted from flour.2 Descartes and other corpuscular philosophers of the 17th century found an enormous challenge to their theories in the quench-hardening of steel.3 Réaumur in the 18th century, in a long programme of experiments on the technologies of iron and steel, ‘alone proceeded to develop corpuscular theory into something useful’, in fact developing techniques of great industrial importance; thus began the repayment of the philosophers’ debt to the craftsmen.4

Ferrous metallurgy had no less influence in economics than in philosophy. Certain fundamental facts about iron and its production have had enormous consequences. First, it has for millennia been a necessity in both agriculture and war. These two fields of endeavour have very different economic circumstances: while an army needs weapons of the best quality, and governments pay what is necessary to supply them, the tools of the farmer always represent a more complex compromise between quality and cost. Thus we shall see that in the Han period weapons were nearly all of wrought iron or steel, while agricultural implements were usually of cast iron. It is safe to assume that a Han peasant would have preferred an axehead,

1 P. 954 below.
2 P. 561 below.
for example, made of steel by a smith, but the many cast-iron axeheads which have been found in Han excavations must have cost much less to produce, and no doubt were preferred for this reason alone.

Iron ores, and the fuel needed for smelting, are found nearly everywhere in the world in quantities sufficient for pre-modern production levels, and iron is relatively cheap by weight. These two facts mean that transportation costs are an extremely important factor in the geography of pre-modern iron production. In Europe, until late medieval times, iron was most often a local product, and only especially high-quality grades were traded over long distances. The situation was rather different in China. Blast-furnace iron production, which was practised from very early times in China but only much later in Europe, is efficient only at high production levels, and in addition provides great economies of scale: efficiency increases as production increases. Thus it was economic to produce for much larger markets than in Europe, with the cost of transportation and marketing a less important factor in the cost of iron.

Another implication of the widespread availability of raw materials is that, in large markets, competition between iron producers will be intense and profits low. So that whenever marketing conditions encourage large-scale production, this production will tend to be located in regions which do not have the resources to produce more profitable goods – their ‘comparative advantage’ is in iron production. Thus, in pre-modern China, iron production was often located in the poorest regions.

Of course numerous other factors also influenced the geographic distribution of the industry, including transportation conditions and the availability of ores with special properties. Of great importance is that, in early iron production, the limiting factor is wood for charcoal. For this reason, large-scale iron production should be located close to abundant forest resources and distant from competing consumers of fuel, especially the populations of cities. This consideration has often led to the appearance of specialized industrial villages, isolated in forests, whose activities were entirely centred about the production of iron. These were called ‘iron plantations’ in colonial America and järdbruk in 18th-century Sweden. The same sort of situation seems to have existed in the province of Guangdong in recent centuries, and in many parts of China in the 3rd and 2nd centuries.5

Here I have described a few technical aspects of iron production and the ways in which they influence the economics and geography of the industry. In this volume we shall see many examples of how such influences play against each other to produce different results in different times and places, in turn influencing wider historical developments.

The rôle of the Chinese state in the iron industry is one of the threads running through this volume. Any state will attempt to extract a share of all economic activity, and the early Han period saw a curious ‘self-assessed’ tax (about which virtually nothing is known) on iron production.6 This was seemingly because the early Han state lacked both the personnel and the technical competence needed to assess the tax. One can imagine that an entirely self-assessed tax was not very effective, and the need for revenue was one of a number of reasons for the establishment in –117 of a state monopoly of all iron production and marketing. The full background for this action, and for the intense opposition which it provoked, have been a matter of dispute, and Section 5 takes up the question in detail.7 One important reason for the monopoly was surely that the ironmasters, commanding large labour forces deep in mountain forests, were perceived as a danger to the power and prestige of the state and its servants. The monopoly seems to have brought these ‘primitive “capitalists” or industrialists’ (as Joseph Needham called them)8 into the Han civil service, making them more manageable. It also brought the blast furnaces to the cities – a disposition which was economic and ecological madness, but good sense from the point of view of administration and control. Later in the Han period, the monopoly arrangements were first reformed and then abandoned, no doubt because of political and economic developments: transportation and markets were improving, making contraband production and sale easier; at the same time that the central government’s decline relative to local power centres made enforcement doubly difficult. This at the same time that the forests were receding and the supply of charcoal for the state blast furnaces, in competition with the needs of urban populations, was becoming more and more costly.

The state’s involvement in the industry took other forms after the Han, and there was never again any attempt to take full control of iron production and marketing. In the Period of Disunion, between the Han and Tang periods, we often hear of military ironworks, and there were also some civil ironworks established by the state, but these do not reflect a monopoly.9 In the Tang period there seems to have been a tax on iron production, but we have no information on how it was assessed or enforced.10

From the Song period onward, better sources give a clearer view of the interaction between the state and the iron industry. In the Song there was a bewildering variety of ad hoc local arrangements to provide tax revenue and raw materials to the state and protection and legitimacy to the industry.11 The Song central government was never very powerful, and we see in the sources constant negotiation about these arrangements between local and state interests.

The development of the use of mineral coal rather than charcoal in iron smelting, seemingly from about the 4th century, brought a major change in the geography of the industry. In the heavily forested south, charcoal continued to be used, and the

5 P. 47–59 and 144–6 below.
6 P. 111 below.
7 Pp. 192–9 below.
8 Needham (1958, p. 7).
9 Pp. 149–50 below.
10 P. 253 a below.
11 Pp. 294–95 below.
best iron came from here. In the badly deforested north, most iron production used mineral coal. The problem of sulphur in the iron produced seems never to have been solved before modern times, so that most of the iron produced in the north was used for cast-iron products, in which sulphur was not a major problem, rather than being converted to wrought iron and steel.

The government’s need for high-quality iron and steel weapons led to the establishment in the early Ming period of a state ironworks in Zunhua, near the capital, Beijing. It produced charcoal iron at great financial and ecological cost in order to obviate the need for transportation of iron from the south. As transportation and the market economy developed in the course of the Ming, and high-quality iron and steel from the south became easily available in north China, the Zunhua ironworks became more and more of an expensive anomaly. It was finally closed in 1581, after 150 years of continuous production, and from then until the end of the dynasty the state’s need for iron and steel was supplied by the open market. A brief attempt to reopen it was made in 1623 by the now-failing dynasty, without success.12

It is here at the end of the Ming that the chronological part of this volume ends, for Joseph Needham’s plan for *Science and Civilisation in China* sets the year 1600 as its terminus. Outside the chronological narrative, Section 2, immediately below, gives an introduction to the technology and economics of iron production in China, based on detailed studies of the iron industries of four regions in recent centuries. Section 3 then goes back to the beginning and considers the first use of iron in China. Succeeding sections proceed more-or-less chronologically. It will be seen from the Section titles that in each period some single aspect has seemed to me most important, but in fact I have attempted to cover all aspects which the archaeological and textual sources make available to us. Finally Section 9 takes up a question which was dear to Joseph Needham, the debt of modern industry to the pre-modern Chinese iron industry.

12 The story of the Zunhua ironworks is told in detail in Section 8(i) below, pp. 327–39.